Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 421

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Current location of fuel debris chemistry

Sato, Nobuaki*; Kirishima, Akira*; Sasaki, Takayuki*; Takano, Masahide; Kumagai, Yuta; Sato, Soichi; Tanaka, Kosuke

Current Location of Fuel Debris Chemistry, 178 Pages, 2023/11

Considerable efforts have been devoted to the decommissioning of the TEPCO's Fukushima Daiichi Nuclear Power Station (1F) and now the retrieval of fuel debris is being proceeded on a trial basis. It can be said that the succession of science and technology related to debris, that is, human resource development, is important and indispensable. For that reason, we thought that a specific textbook on decommissioning is necessary. Regarding the 1F fuel debris, we still do not know enough, and it would be difficult to describe the details. However, 12 years have passed since the accident, and we have come to understand the situation of 1F to a certain extent. At this stage, it is essential for future development to organize the current situation by combining examples of past severe accidents. Therefore, we presented in this book the current state of fuel debris chemistry research from the perspectives of solid chemistry, solution chemistry, analytical chemistry, radiochemistry, and radiation chemistry.

JAEA Reports

Study on molybdenum adsorption properties of alumina-based adsorbents and their application to $$^{99}$$Mo/$$^{rm 99m}$$Tc generators using the (n,$$gamma$$) method (Thesis)

Fujita, Yoshitaka

JAEA-Review 2023-010, 108 Pages, 2023/08

JAEA-Review-2023-010.pdf:6.62MB

$$^{rm 99m}$$Tc (technetium-99m) is the most widely used radioisotope in radiopharmaceutical and is decayed from the parent nuclide $$^{99}$$Mo (molybdenum-99). Most of $$^{99}$$Mo is generated as one of the fission products of uranium, but recently, from the viewpoint of nuclear security and nuclear nonproliferation, a uranium-free $$^{99}$$Mo production method is desired. One such method is the (n,$$gamma$$) method, in which $$^{98}$$Mo is irradiated by neutrons. However, since the specific activity of $$^{99}$$Mo produced by this method is extremely low, it is necessary to improve the Mo adsorption and $$^{rm 99m}$$Tc elution property of alumina (Al$$_{2}$$O$$_{3}$$), which is used as a Mo adsorbent, to apply this method to the $$^{99}$$Mo/$$^{rm 99m}$$Tc generator, a device for separation and concentration of $$^{rm 99m}$$Tc from $$^{99}$$Mo. Therefore, the objective of this thesis is to elucidate the parameters effective for improving the performance of alumina for the practical use of the $$^{99}$$Mo/$$^{rm 99m}$$Tc generator using the (n,$$gamma$$) method, and to contribute to the development of alumina columns that may be applicable to low specific activity $$^{99}$$Mo. In this study, alumina with different starting materials was prepared and its applicability as Mo adsorbent for $$^{99}$$Mo/$$^{rm 99m}$$Tc generator was evaluated. The effects of crystal structure and specific surface area of alumina on Mo adsorption properties were clarified, and the Mo adsorption mechanism was elucidated based on the results of surface analysis of alumina. In addition, $$^{rm 99m}$$Tc elution properties and $$^{rm 99m}$$Tc solution quality were evaluated using MoO$$_{3}$$ irradiated in the Kyoto University Research Reactor (KUR), and a new column shape with potential application to generators was proposed based on the experiment results of alumina columns designed for current generators.

Journal Articles

Outline of JENDL-5

Iwamoto, Osamu

JAEA-Conf 2022-001, p.21 - 26, 2022/11

Journal Articles

Calculations for radioactivity evaluation of research reactors for near surface disposal and their application methods

Kochiyama, Mami

Kaku Deta Nyusu (Internet), (133), p.76 - 81, 2022/10

The outline of the presentation at the joint session of Research Committee for Nuclear Data and Subcommittee on Nuclear Data in the Atomic Energy Society of Japan 2022 Autumn Meeting was contributed to Nuclear Data News. As part of the study on the near surface disposal of waste from research facilities, we are studying a method for evaluating the radioactivity inventory of waste generated by the dismantling of research reactors. In the radioactivity evaluation of the research reactor, we have investigated the method of calculating the neutron transport in the reactor and using the obtained neutron spectrum to calculate the activation of the internal structure by the ORIGEN-S code. In recent years, we have introduced and evaluated libraries created based on JENDL-4.0 and JENDL/AD-2017, and we will introduce the status of their examination. And we will introduce how to apply the results obtained by the radioactivity evaluation calculation to burial disposal.

Journal Articles

Journal Articles

Production of diagnostic $$^{99}$$Mo/$$^{99m}$$Tc by PWR

Nasu, Takuya*; Fujita, Yoshitaka

Enerugi Rebyu, 42(10), p.15 - 18, 2022/09

no abstracts in English

JAEA Reports

Common evaluation procedure radioactivity concentration by theoretical calculation for radioactive waste generated from the decommissioning of research reactors

Okada, Shota; Murakami, Masashi; Kochiyama, Mami; Izumo, Sari; Sakai, Akihiro

JAEA-Testing 2022-002, 66 Pages, 2022/08

JAEA-Testing-2022-002.pdf:2.46MB

Japan Atomic Energy Agency is an implementing organization of burial disposal for low-level radioactive waste generated from research, industrial and medical facilities in Japan. Radioactivity concentrations of the waste are essential information for design of the disposal facility and for licensing process. A lot of the waste subjected to the burial disposal is arising from dismantling of nuclear facilities. Radioactive Wastes Disposal enter has therefore discussed a procedure to evaluate the radioactivity concentrations by theoretical calculation for waste arising from the dismantling of the research reactors facilities and summarized the common procedure. The procedure includes evaluation of radioactive inventory by activation calculation, validation of the calculation results, and determination of the disposal classification as well as organization of the data on total radioactivity and maximum radioactivity concentration for each classification. For the evaluation of radioactive inventory, neutron flux and energy spectra are calculated at each region in the reactor facility using two- or three-dimensional neutron transport code. The activation calculation is then conducted for 140 nuclides using the results of neutron transport calculation and an activation calculation code. The recommended codes in this report for neutron transport calculation are two-dimensional discrete ordinate code DORT, three-dimensional discrete ordinate code TORT, or Monte Carlo codes MCNP and PHITS, and for activation calculation is ORIGEN-S. Other recommendation of cross-section libraries and calculation conditions are also indicated in this report. In the course of the establishment of the procedure, Radioactive Wastes Disposal Center has discussed the commonly available procedure at meetings. It has periodically held to exchange information with external operators which have research reactor facilities. The procedure will properly be reviewed and be revised by reflecting future situ

Journal Articles

Chemistry of the elements at the end of the actinide series using their low-energy ion-beams

Sato, Tetsuya; Nagame, Yuichiro*

Radiochimica Acta, 110(6-9), p.441 - 451, 2022/07

 Times Cited Count:0 Percentile:0.01(Chemistry, Inorganic & Nuclear)

We describe our recent achievements in the effective production of low-energy ion-beams of the elements at the end of the actinide series, fermium (Fm, atomic number Z = 100), mendelevium (Md, Z = 101), nobelium (No, Z = 102), and lawrencium (Lr, Z = 103), using a surface ionization ion-source installed in the ISOL (Isotope Separator On-Line) at the Tandem accelerator facility of JAEA (Japan Atomic Energy Agency). Then the successful measurements of the first ionization potentials (IP$$_1$$) of these elements with the ISOL setup are reviewed. The measured IP$$_1$$ values increased up to No via Fm and Md, while that of Lr was the lowest among the actinides. Based on the variation of the IP1 values of the heavy actinides with the atomic number in comparison with those of the heavy lanthanides, the results clearly demonstrated that the 5f orbitals are fully filled at No, and the actinide series ends with Lr. Furthermore, the IP$$_1$$ value of Lr provoked controversy over its position in the Periodic Table, so a short introduction to this issue is presented. The feasibility of the extension of chemical studies to still heavier elements with their ion-beams generated by ISOL is briefly discussed.

Journal Articles

Measurement of nuclide production cross sections for proton-induced reactions on Mn and Co at 1.3, 2.2, and 3.0 GeV

Takeshita, Hayato*; Meigo, Shinichiro; Matsuda, Hiroki*; Iwamoto, Hiroki; Nakano, Keita; Watanabe, Yukinobu*; Maekawa, Fujio

Nuclear Instruments and Methods in Physics Research B, 511, p.30 - 41, 2022/01

 Times Cited Count:5 Percentile:65.59(Instruments & Instrumentation)

Nuclide production cross sections for proton-induced reactions on Mn and Co at incident energies of 1.3, 2.2, and 3.0 GeV were measured by the activation method at the J-PARC. In total, 143 production cross sections of reaction products were obtained. Among them, the cross sections of $$^{55}$$Mn(p,X)$$^{38}$$S and $$^{55}$$Mn(p,X)$$^{41}$$Ar were measured for the first time. The stable proton beam and well established beam monitoring system contributed to the reduction of the systematic uncertainties to typically less than 5%, which was better than those of the previous data. To examine the prediction capabilities of spallation reaction models and evaluated data library, the measured data were compared with the spallation reaction models in PHITS (INCL4.6/GEM, etc.), INCL++/ABLA07, and the JENDL/HE-2007 library. The comparison of the mean square deviation factors indicated that both INCL4.6/GEM and JENDL/HE-2007 showed better agreement with the measured data than the others.

Journal Articles

Integral experiments of technetium-99 using fast-neutron source reactor "YAYOI"

Nakamura, Shoji; Hatsukawa, Yuichi*; Kimura, Atsushi; Toh, Yosuke; Harada, Hideo

Journal of Nuclear Science and Technology, 58(12), p.1318 - 1329, 2021/12

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

The present study performed fast-neutron capture cross-section measurement of $$^{99}$$Tc by an activation method using a fast-neutron source reactor "YAYOI" of the University of Tokyo. Technetium-99 samples were irradiated with reactor neutrons using a pneumatic system. Reaction rates of $$^{99}$$Tc were obtained by measuring decay gamma rays emitted from $$^{100}$$Tc. The neutron flux at an irradiation position was monitored with gold foils. The fast-neutron capture cross section of $$^{99}$$Tc at neutron energy of 85 keV was derived as 0.432$$pm$$0.023 barn by using the reaction rates of $$^{99}$$Tc, evaluated cross-section data and the fast-neutron flux spectrum of the YAYOI reactor. The present study agreed with the evaluated nuclear data library JENDL-4.0.

Journal Articles

Radiological estimation and validation for the Accelerator-Based Boron Neutron Capture Therapy Facility at the Ibaraki Neutron Medical Research Center

Nakashima, Hiroshi; Nakamura, Takemi; Kobayashi, Hitoshi*; Tanaka, Susumu*; Kumada, Hiroaki*

NEA/NSC/R(2021)2 (Internet), p.142 - 151, 2021/12

Aiming of development of facilities for boron neutron capture therapy (BNCT) that can be installed in hospitals, an accelerator-based BNCT facility is being developed at the Ibaraki Neutron Medical Research Center under a collaboration among the Japan Atomic Energy Agency, the High Energy Accelerator Research Organization, the University of Tsukuba, and other institutions. It consists of a proton accelerator, having a maximum beam power of 80 kW, and a target, moderator, collimator and shield (TMCS) system. For the design concept, to satisfy the BNCT beam conditions and achieve a low activation, the radiation behavior in the TMCS system was simulated by the Monte Carlo method and this system configuration was optimized accordingly. In addition, the radiation estimation of the TMCS system was verified via several experiments and its applicability for BNCT was proved. This report reviews the estimation and validation studies for the development of the accelerator-based BNCT facility.

Journal Articles

Thermal-neutron capture cross-section measurement of $$^{237}$$Np using graphite thermal column

Nakamura, Shoji; Endo, Shunsuke; Kimura, Atsushi; Shibahara, Yuji*

KURNS Progress Report 2020, P. 94, 2021/08

The present study selected $$^{237}$$Np among radioactive nuclides and aimed to converge a contradiction between reported thermal-neutron capture cross sections. Neutron irradiation was carried out using the graphite thermal column equipped with the Kyoto University Research Reactor. A solution equivalent to 950 Bq order of radioactivity was pipetted out of a $$^{237}$$Np standard solution and dropped onto a fiber filter, which was then dried with an infrared lamp to prepare a $$^{237}$$Np sample. The $$^{237}$$Np sample was quantified using 312-keV gamma ray emitted from $$^{233}$$Pa in a radiation equilibrium with $$^{237}$$Np. To monitor a thermal-neutron flux component at an irradiation position, the $$^{237}$$Np sample was irradiated together with several stable nuclides as neutron flux monitors: $$^{45}$$Sc, $$^{59}$$Co, $$^{98}$$Mo, $$^{181}$$Ta and $$^{197}$$Au. The reaction rate of $$^{237}$$Np was obtained from gamma-ray yields given by $$^{238}$$Np and $$^{233}$$Pa, and then the thermal-neutron capture cross section of $$^{237}$$Np was derived.

Journal Articles

Effects of helium on irradiation response of reduced-activation ferritic-martensitic steels; Using nickel isotopes to simulate fusion neutron response

Kim, B. K.*; Tan, L.*; Sakasegawa, Hideo; Parish, C. M.*; Zhong, W.*; Tanigawa, Hiroyasu*; Kato, Yutai*

Journal of Nuclear Materials, 545, p.152634_1 - 152634_12, 2021/03

 Times Cited Count:1 Percentile:16.35(Materials Science, Multidisciplinary)

Journal Articles

Topics from radiation safety design of J-PARC

Nakashima, Hiroshi

JAEA-Conf 2020-001, p.69 - 74, 2020/12

J-PARC (Japan Proton Accelerator Research Complex) is a high-energy proton accelerator complex of the world's highest beam power. Because of its very high beam power and its high energy as well as the large-scale accelerator complex, we encountered some very difficult problems on radiation safety design. Various examinations and countermeasures were considered in order to overcome the difficulty. This paper introduces some of them. In addition, some new knowledge obtained during 10 years after completion are described.

Journal Articles

Status of JENDL

Iwamoto, Osamu; Iwamoto, Nobuyuki; Shibata, Keiichi; Ichihara, Akira; Kunieda, Satoshi; Minato, Futoshi; Nakayama, Shinsuke

EPJ Web of Conferences, 239, p.09002_1 - 09002_6, 2020/09

 Times Cited Count:46 Percentile:99.95(Nuclear Science & Technology)

Journal Articles

HPRL; International cooperation to identify and monitor priority nuclear data needs for nuclear applications

Dupont, E.*; Bossant, M.*; Capote, R.*; Carlson, A. D.*; Danon, Y.*; Fleming, M.*; Ge, Z.*; Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; et al.

EPJ Web of Conferences, 239, p.15005_1 - 15005_4, 2020/09

 Times Cited Count:13 Percentile:99.69(Nuclear Science & Technology)

Journal Articles

Actinides and transactinides

Nagame, Yuichiro*; Sato, Tetsuya; Kratz, J. V.*

Kirk-Othmer Encyclopedia of Chemical Technology (Internet), 52 Pages, 2020/09

This article gives a brief summary of the recent progress in the synthesis of new elements as well as heavy nuclei far from the stability line and in the studies of exotic nuclear decay properties including nuclear fission of heavy nuclei and chemical characterization of heavy actinides and transactinides. Experimental techniques of single-atom detection after in-flight separation with electromagnetic separators have made a breakthrough in discovery of new heavy isotopes. Development of automated rapid chemical separation apparatuses performing one atom-at-a-time chemistry has also considerably contributed to the progress of chemical studies of the transactinides. Some key experiments exploring new frontiers of the production and chemical characterization of heavy actinides and transactinides using state-of-the-art techniques are demonstrated. A short historical perspective of actinide and transactinide elements and some prospects of extending nuclear and chemical studies of heavy elements in the future are briefly presented.

Journal Articles

Sensitivity analysis of activation

Okumura, Keisuke

Hoshasen Shahei Handobukku; Oyohen, p.78 - 83, 2020/03

no abstracts in English

JAEA Reports

Analysis of the radioactivity concentrations in low-level radioactive waste generated from JRR-2, JRR-3 and hot laboratory facilities

Tobita, Minoru*; Haraga, Tomoko; Sasaki, Takayuki*; Seki, Kotaro*; Omori, Hiroyuki*; Kochiyama, Mami; Shimomura, Yusuke; Ishimori, Kenichiro; Kameo, Yutaka

JAEA-Data/Code 2019-016, 72 Pages, 2020/02

JAEA-Data-Code-2019-016.pdf:2.67MB

In the future, radioactive wastes which generated from research and testing reactors in Japan Atomic Energy Agency are planning to be buried for the near surface disposal. Therefore, it is required to establish the method to evaluate the radioactivity concentrations of radioactive wastes by the time it starts disposal. In order to contribute to this work, we collected and analyzed the samples generated from JRR-2, JRR-3 and Hot laboratory facilities. In this report, we summarized the radioactivity concentrations of 25 radionuclides ($$^{3}$$H, $$^{14}$$C, $$^{36}$$Cl, $$^{60}$$Co, $$^{63}$$Ni, $$^{90}$$Sr, $$^{94}$$Nb, $$^{93}$$Mo, $$^{99}$$Tc, $$^{108m}$$Ag, $$^{126}$$Sn, $$^{129}$$I, $$^{137}$$Cs, $$^{152}$$Eu, $$^{154}$$Eu, $$^{233}$$U, $$^{234}$$U, $$^{238}$$U, $$^{238}$$Pu, $$^{239}$$Pu, $$^{240}$$Pu, $$^{241}$$Pu, $$^{241}$$Am, $$^{243}$$Am, $$^{244}$$Cm) which were obtained from radiochemical analysis of those samples.

Journal Articles

Status and future plan of JENDL

Iwamoto, Osamu

JAEA-Conf 2019-001, p.7 - 11, 2019/11

421 (Records 1-20 displayed on this page)